

General Certificate of Education

Mathematics 6360

MD01 Decision 1

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

			WWW. My My
Key to marl	k scheme and abbreviations used in	marking	MD01 - AQA GCE Mark Scheme 20 Marins cloc
М	mark is for method		
m or dM	mark is dependent on one or more M	1 marks and is fc	
Α	mark is dependent on M or m marks		
В	mark is independent of M or m mark		
Е	mark is for explanation		
\sqrt{or} ft or F	follow through from previous		
	incorrect result	MC	mis-copy
CAO	correct answer only	MR	mis-read
CSO	correct solution only	RA	required accuracy
AWFW	anything which falls within	FW	further work
AWRT	anything which rounds to	ISW	ignore subsequent work
ACF	any correct form	FIW	from incorrect work
AG	answer given	BOD	given benefit of doubt
SC	special case	WR	work replaced by candidate
OE	or equivalent	FB	formulae book
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme
–x EE	deduct x marks for each error	G	graph
NMS	no method shown	с	candidate
PI	possibly implied	sf	significant figure(s)
SCA	substantially correct approach	dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

MD01 - AQA GCE Mark Scheme 20 Mathscio

aths

ID01	~ • •		-	×0			
Q 1(a)	Solution	Marks	Total	Comments			
	A B C C C D D D E F F G G G G G G G G	M1 A1	2	Bipartite graph, 2 sets of (some) vertices labelled, 6+ edges			
(b)	<i>A</i> 3, <i>B</i> 4, <i>C</i> 2, <i>E</i> 5						
	D - 4 + B, $6 - C + 2$, $6 - E + 5$	M1		1 correct			
	F - 5 + E, $1 - A + 3$, $F - 4 + B$	M1		1 correct			
	D - 4 + B - 2 + C - 6	A1		Or reverse			
	F - 5 + E - 3 + A - 1	A1		Or reverse			
	ignore extra paths attempted						
	OR						
	F - 4 + B - 2 + C - 6	(A1)		Or reverse			
	D - 4 + F - 5 + E - 3 + A - 1	(A1)		Or reverse			
	ignore extra paths attempted						
	A1, B2, C6, D4, E3, F5	B1	5	Must be list, not diagram			
	Watch for correct method using unusual notation						
	One continuous path scores M1A1M0 eg $D-4+B-2+C-6+F-5+E-3+A-1$						
	If working on diagram(s) only then max M1A0 M1A0 for each M1: must have start point labelled and a clear path (numerically labelled or coloure left to right to left (or reverse)						
	Total		7				

MD01 - AQA GCE Mark Scheme 20 Mathsciou

1sths

<u>MD01 (cont)</u>					-40
Q		Solution	Marks	Total	Comments
Q 2		Solution S 0 2 0 3 0 6	Marks B6 (B5) (B4) (B3) (B2) (B1)	<u>Total</u> 6	Comments All 12 correct 10 correct 8 correct 7 correct 6 correct 5 correct Tallies can only score max B2 for three 1s and three 0s (not blanks)
3(a)(i)	9	Total	B1	6 1	
5(a)(1))		DI	1	
(ii)	<i>n</i> – 1		B1	1	
(b)(i)	$ \begin{array}{c} EF \\ BC \\ CG \\ JI \\ BI \\ AB \\ GE \\ CH \\ DE \\ \end{array} \left(\begin{array}{c} 8 \\ 8.5 \\ 10 \\ 11.5 \\ 12 \\ 14 \\ 16 \\ 16.5 \\ 21 \\ \end{array}\right) $	5	M1 A1 A1 B1		SCA minimum spanning tree, 7+ edges (not cycles), must be in ascending order and edges required (not lengths alone) <i>BC</i> 2 nd <i>JI</i> 4 th 9 edges (not lengths alone) – may be earned in (b)(iii)
			Al	5	All correct
(ii)	117.5		B1	1	
(iii)			M1 A1	2	7+ edges, minimum spanning tree Correct, including labelling
		Total		10	<u> </u>

					MD01 - AQA GCE M	ark Scheme 2
1 (cont						ark Scheme 2L mainscho mments vertices - CAO)
<u>I (cont</u> Q	Solution		Marks	Total	Con	nments
4(a)	Odds B, C, H, F		E1		PI (must be these 4	vertices - CAO)
	BC + HF = 160 + 320 or 480 BH + CF = 280 + 520 or 800 BF + CH = 360 + 210 or 570		M1 A2,1,0		3 sets of pairs A2 for all 3 correct,	
l	(Total =)(2410 + 480) = 2890		A1F B1	6	2410 + their shortes	t pairing (PI)
					SC 2890 with no w one route listed scor Route listed not 289	res 2/6
(b)	A 80 8	80 C	.(0) 21	10	H ²¹⁰ 130	P 340
l	80	250			120	200
I			240		320	
I	160 _B	30 1	Construction of the second sec	30 2	N 330 200	520
l			6			ľ
	90	170			130	150
	250		400 410		450	510
I	G 15	50 M	6	50	E 60	T
I				/		
			17 M1	70	SCA; cancelling req	uired at I or N
ļ			m1		2 values at <i>I</i>	
I			m1	1	2 values at <i>M</i>	
I			m1	1	2 values at N	
			A1		All correct – no extr Condone 520 boxed final values at each	l at F and condone
			B1		510 at <i>T</i> (diagram ta answer book)	ikes precedence over
I	Route CABINET		B1	7	Or reverse	
'		Total		13		

<u>(cont)</u> <u>2</u> 5(a)	Solution eg ABCDEFA		Marks M1	Total	MD01 - AQA GCE Mark Scheme 20 MD01 - AQA GCE Mark Scheme 20 Comments Any tour <i>ABA</i> or better, any start vertex
					Any tour ARA or better any start vertex
			A1	2	Any tour <i>ABA</i> or better, any start vertex but not revisiting a vertex May be shown in a labelled diagram of a cycle (eg triangle <i>ABC</i>) With all vertices visited May be shown in a labelled diagram of a cycle
	F D C A B E F (20) (15) (5) (25) (15) (15) (= 95)	AG	M1 m1 A1	3	Any tour, start/finish at <i>F</i> Visits all vertices Correct order If solution shown solely on matrix, then order of selection of vertices must be shown
	Tour <u>May</u> be improved on		E1 E1	2	"It's an answer", "a cycle", "it works", "it's possible" "Can't be worse", "not necessarily best", "could be improved" Not "can be improved"
	F E C A B D F (30) (7) (5) (25) (11) (10)		M1 A1		Tour <i>FE</i> (<i>ABCD</i> in any order with <i>B</i> before <i>D</i>) <i>F</i> Correct order
=	= 88		B1	3	If solution shown solely on matrix, order of selection of vertices must be shown

13ths

Q) Solution	Marks	Total	Comments Working must be in x, y and z
6				Equalities can only score M marks
	6x + 4x + 2 = < 240	M1		Strict inequalities: –1 first error only
(a)	$6x + 4y + 2z \le 240$ $3x + 2y + z \le 120$	A1		CAO
	$3x + 2y + 2 \ge 120$	AI		CAO
	$6x + 3y + 9z \le 300$	M1		
	$2x + y + 3z \le 100$	A1		САО
	$12x + 18y + 6z \le 900$	M1		
	$2x + 3y + z \le 150$	A1		САО
	12 + 12 + 6 - 2(6 + 2 + 0 -)			
	$12x + 18y + 6z \ge 2(6x + 3y + 9z)$	M1	0	OE CSO: OF in simplified form of a second
	$y \ge z$	A1	8	CSO ; OE in simplified form eg $y - z \ge 0$
(b)(i)	(z=x)			
	$4x + 2y \le 120$ OE or $3x + 3y \le 150$ OE	M1		Correct unsimplified subst $x = z$ into either of these 2 correct in grue (coorr)
	$4x + 2y \le 120 \text{ OE} \implies 2x + y \le 60 \text{ AG}$			either of these 2 correct inequs. (seen)
	$3x + 3y \le 150 \text{ OE} \implies x + y \le 50 \text{ AG}$	A1		Both correct and simplified
	$5x + y \le 100, y \ge x$ AG	A1	3	Correct subst $x = z$ into 4 correct inequs.
(ii)		B1 B1 B1 B1	5	Line 1 correct at $(0, 50)$ (25, 25) Line 2 correct at $(10, 50)$ (20, 0) Line 3 correct at $(0, 60)$ (30, 0) Line 4 correct at $(0, 0)$ (25, 25) Each line correct to $\frac{1}{2}$ square, horizontally or vertically FR, must have all lines correct and labelled region (condone no shading)
(iii)	N = x + y + z = 2x + y	M1	2	Stated or PI
	Max = 60	A1	2	CSO; SC unsupported 60 scores 2/2
(iv)	10, 40, 10	B1		Any correct; may be earned in part (iii)
	11, 38, 11 12, 36, 12	B1		3 correct
	13, 34, 13	B1	3	4 correct and no extras
	Total		21	

MD01 - AQA GCE Mark Scheme 20 Mains Cloc

aths

7(a)(i) B1 1 OE (ii) M1 4 edges (iii) M1 2 OE Note: new edges must meet each squ vertices on the opposite ends of a sic the square egg egg (iii) M1 4 edges egg (iii) M1 4 edges (iii) M1 4 edges (iii) M1 4 edges (iii) M1 2 B1 1 (n±1) even	01 (cont) Q	Solution	Marks	Total	Comments
 (ii) (ii) (iii) (iiii) (iii) 					Comments
(iii) $M1 = 4 \text{ edges}$ $A1 = 2 OE$ Note: new edges must meet each squ vertices on the opposite ends of a side the square eg eg \swarrow \star \square			B1	1	OE
(iii) $M1 = 4 \text{ edges}$ $A1 = 2 OE$ Note: new edges must meet each squ vertices on the opposite ends of a side the square eg eg \swarrow \star \square	(ii)				
(iii) (iii) (iii) (iii) (i) (b)(i) $n \text{ odd}$ (b)(i) (i) (i) (i) (i) (i) (i) (i)			M1		4 edges
(iii) (iii)			A1	2	Note : new edges must meet each square at vertices on the opposite ends of a side of
(b)(i) $n \text{ odd}$ (b)(i) $n $					eg
(b)(i) $n \text{ odd}$ A1 2 Eulerian (all vertices are of even ord B1 1 $(n \pm 1)$ even	(iii)				
(b)(i) $n \text{ odd}$ B1 1 $(n \pm 1) \text{ even}$			M1		4 edges
			A1	2	Eulerian (all vertices are of even order)
(ii) (Triangle) $n = 3$ B2 2 Triangle stated or drawn scores B1	(b)(i)	<i>n</i> odd	B1	1	$(n \pm 1)$ even
$D_{1} = D_{1} = D_{2} = D_{2} = D_{2} = D_{1} = D_{2} = D_{2$	(ii)	(Triangle) $n = 3$	B2	2	Triangle, stated or drawn, scores B1
Total 8 TOTAL 75		Total		8	